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Tasks have goals. Meeting those goals depends on abil-
ity but also effort. When we talk about cognitive tasks, 
then, we can talk about cognitive effort. This notion 
was well captured by Kahneman (1973):

[The] intensive aspects of attention . . . must be 
distinguished from arousal. Thus, the schoolboy 
who pays attention . . . is performing work, 
expending his limited resources, and the more 
attention he pays, the harder he works. . . . The 
intensive aspect of attention corresponds to effort 
rather than to mere wakefulness. (p. 4)

In studies with adults and older children, researchers 
can control effort through instructions and incentives, 
but infant researchers do not have this luxury. Instead, 
we typically use generalized assessments (fussiness, 
sleepiness, inability to habituate, or valid data propor-
tions) to exclude infants who do not seem to be on 
task (Slaughter & Suddendorf, 2007). Even then, most 
of what we have learned about infants’ cognitive abili-
ties comes from measures of their looking patterns, but 
looking does not imply seeing; it may just be a blank 
stare (Aslin, 2012). And the stakes are high. Averaging 
inattentive moments with on-task ones can systemati-
cally underestimate infants’ abilities and unnecessarily 
limit theories of cognitive development. Luckily, we have 
a window onto cognitive effort: the pupil.

Pupillometry as a Measure of  
Cognitive Effort

The pupillary light reflex was first described by the 
10th-century Persian physician Al-Razi. The diameter 
of the pupil is also modulated by stress and arousal via 
the autonomic nervous system. Importantly, there is a 
third, higher-level cortical network that contributes to 
pupil regulation, and this network underlies the effort 
exerted from moment to moment on an ongoing task. 
More than 50 years ago, Hess and Polt (1964) showed 
that the pupil was a marker of task difficulty and found 
greater dilation in more difficult mental multiplication 
tasks. Since then, cognitive psychologists have used the 
pupil as a sensitive, involuntary measure of effort and 
attention in a variety of domains; more than 400 research 
articles have been published in the past 10 years—
reviews highlight this trend in both adults (van der Wel 
& van Steenbergen, 2018) and infants (Laeng, Sirois, & 
Gredebäck, 2012). In all of this work, controlling for 
other effects on pupil diameter (e.g., luminance or emo-
tional triggers) is always the first design step. After that 
is done, the pupil provides a marker of task-relevant 
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Abstract
Working memory allows people to manipulate information in support of ongoing tasks and provides a work space 
for cognitive processes such as learning, reasoning, and decision making. How well working memory works depends, 
in part, on effort. Someone who pays attention at the right time and place will have better memory and improved 
performance on memory tasks. In adult cognitive research, participants’ devotion of maximal task-focused effort is 
often taken for granted, but in infant studies, researchers cannot make that assumption. In this article, we showcase 
how pupillometry can provide an easy-to-obtain physiological measure of cognitive effort that allows us to better 
understand infants’ emerging abilities. In our work, we use pupillometry to measure trial-by-trial fluctuations of effort, 
establishing that, just as in adults, such fluctuations influence how well infants can encode information in visual 
working memory. We hope that by using physiological measures such as pupil dilation, there will be a renewed effort 
to investigate the interaction between infants’ attentive states and cognition.
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effort, for instance, in maintaining information during 
visual search (Porter, Troscianko, & Gilchrist, 2007) and 
multiple object tracking (Alnæs et al., 2014). The pupil 
provides a valid measure of effort because it reflects 
the activity of the locus coeruleus–noradrenergic (LC-
NE) neuromodulatory system. (The LC is a small nucleus 
in the brain stem; it is the sole source of cortical nor-
adrenaline and projects to widely distributed areas of 
the brain, especially the frontal cortex.) This system 
plays a causal role in regulating task engagement and 
optimizing performance (Aston-Jones & Cohen, 2005; 
Sara, 2009). Two components of LC activity have been 
isolated—tonic and phasic—that are positively reflected 
in obligatory, time-linked tonic and phasic pupil responses. 
Tonic activity marks a relatively slow-changing modulation 
of general arousal (“wakefulness,” in Kahneman’s, 1973, 
formulation); low levels are associated with drowsiness 
and high levels with distractibility. In contrast, phasic 
activity marks a rapid, task-evoked modulation of a 
focused attentional state that optimizes performance.

Pupillometry has been used successfully in a few 
different domains of cognitive development. For 
instance, pupillometry has corroborated that infants 
have specific expectations about their physical and 
social world and that when those expectations are vio-
lated, effort is needed to process the unexpected: For 
example, infants show greater pupil dilation when 
viewing physically impossible events ( Jackson & Sirois, 
2009). However, there has been little developmental 
research using pupillometry to assess effort in working 
memory. This is surprising given that working memory 
and the control of attention are intimately tied (Kane 
& Engle, 2003), and the use of the pupillometry in the 
study of memory has a rich history (Kahneman & 
Beatty, 1966). In adults, the pupil has been used to 
measure the influence of effort on trial-by-trial working 
memory performance (Unsworth & Robison, 2017) and 
exploited to determine the relative effort of older and 
younger adults in working memory tasks (e.g., older 
adults need to try harder to achieve the same perfor-
mance as younger ones; Piquado, Isaacowitz, & Wingfield, 
2010). Importantly, Chiew and Braver’s (2014) work dem-
onstrated that it is effort per se (which they manipulated 
through rewards), not memory load directly or positive 
affect (looking forward to receiving a reward), that drives 
the pupil.

Effort Modulates Memory

Accounting for effort is especially important in the 
study of working memory because this is the system 
responsible for maintaining information in an active 
state in service to an ongoing task (Baddeley, 1992). 
Early developmental work used heart rate to identify 
periods of sustained attention when the encoding of 

visual information into memory was especially efficient 
(when 3- to 6-month-olds were shown a stimulus for 5 s  
during periods of sustained attention, this was sufficient 
to elicit a novelty preference equivalent to a baseline 
exposure time of 20 s; Richards, 1997). The link between 
infants’ sustained attention and subsequent memory 
encoding was also demonstrated using event-related 
potentials (ERPs; Richards, 2003) and electroencepha-
lograms (Begus, Southgate, & Gliga, 2015). These meth-
ods are useful but lack temporal sensitivity (heart rate) 
or are relatively cumbersome to use with infants (elec-
troencephalogram). Pupillometry offers a practical, vali-
dated measure in which responses can be collected at a 
subsecond time scale (the lower bound for task-evoked 
change is likely 220 ms; see Mathôt, Fabius, Van Heusden, 
& Van der Stigchel, 2018) during unrestrained viewing of 
stimuli on the screen of an eye tracker, which is particu-
larly important in infant studies.

That said, there had not been any use of pupillom-
etry to assess infants’ effort in working memory tasks 
until very recently. There had been some work on long-
term memory and effort; a recent study found that 
7-month-olds but not 4-month-olds showed larger pupil 
dilation to previously seen items compared with novel 
ones (Hellmer, Söderlund, & Gredebäck, 2018), replicat-
ing the effect found in adults. In addition, Sonne, Kingo, 
and Krøjgaard (2017) found a positive correlation 
between pupil dilation and memory retrieval in an imi-
tation task in 20-month-old toddlers over a 2-week 
period. Until the work of our group (Cheng, Kaldy, & 
Blaser, 2019a), the relationship between effort (as mea-
sured by the pupil response) and working memory had 
been studied only in school-age children (7 years and 
up) who can reliably follow verbal instructions (E. L. 
Johnson, Miller Singley, Peckham, Johnson, & Bunge, 
2014; Karatekin, Couperus, & Marcus, 2004). Our work 
established that just as in adults (Unsworth & Robison, 
2017), moment-to-moment fluctuations in cognitive 
effort modulate infants’ working memory performance. 
For instance, in a group of 13-month-old infants from 
a recent study of ours (Cheng et al., 2019a), the highest 
quartile of participants—based on their average pupil 
dilation during the presentation of to-be-remembered 
stimuli—achieved 66% correct, and the lowest quartile 
performed at chance.

Effort Affects Visual Working Memory 
(VWM) Performance in Infants

To study infants’ working memory, we designed a novel 
delayed-match-retrieval (DMR) paradigm (Kaldy, Guillory, 
& Blaser, 2016), a memory game based loosely on the 
card game Concentration, adapted for infants and based 
on anticipatory eye movements (see Fig. 1a). This para-
digm inverts the classic delayed-match-to-sample task 
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that has been used by memory researchers for close to 
80 years. In the classic task, a sample object is pre-
sented (e.g., a star) and then removed. After a delay 
period, two objects are presented: a match (e.g., another 
star) and a nonmatch (e.g., a heart). An adult would be 
asked, or an animal would be trained with rewards, to 
pick out the match. Importantly, DMR inverts this pro-
cedure: Potential matches or nonmatches are presented 
first and then covered. After a delay, the sample is 
revealed; the participant then needs to find the (now 
hidden) match. This inversion means that high perfor-
mance is achieved only when all object-location bind-
ings are successfully maintained in memory during the 
delay. Infants are encouraged to do this through visual 
rewards that are presented at the location of the match 

(after the end of the response period). Each time, to-be-
remembered objects are selected from a small set with 
replacement, ensuring that items in working memory 
have to be updated in each trial. We present the events 
on the screen of an eye tracker and measure which of 
the face-down cards (match or nonmatch) infants look 
at first after the sample was exposed, in anticipation of 
the reward animation. Compared with traditional change-
detection tasks used with infants (Ross-Sheehy, Oakes, 
& Luck, 2003), this task has some more naturalistic ele-
ments; for example, the cards flip instead of having a 
sudden onset and offset, and the retention period (2–5 s) 
is in the time frame of everyday tasks that infants face. 
But note that infants’ performance is limited by how 
well they can learn the simple rule of the game (“Find 

a

r = .48, p = .03

Pu
pi

l D
ila

tio
n 

(m
m

)

Pupil Dilation During Encoding (mm)

VW
M

 P
er

fo
rm

an
ce

 (%
 C

or
re

ct
)Above Median Performance

Below Median Performance

Time (ms)

–

–
– – – – –

cb

Fig. 1. Illustration of and results from the delayed-match-retrieval paradigm. On each trial (a), 13-month-old infants (N = 22) watched an 
animation in which three face-down cards entered the screen. Two of the cards then flipped face up sequentially to show different faces 
(e.g., a ball and a dog) and then flipped back face down. The third card, which matched one of the two (now face down) cards, then 
flipped face up. A delay of 3 s then ensued, during which eye movements and pupil diameter were monitored. After this 3-s response phase, 
a brief reward animation occurred at the location of the match card (simultaneously, the card was flipped face up). This was designed to 
encourage infants to fixate on the location of the (face down) match in anticipation of the reward. During the response phase, before the 
onset of the reward, if infants fixated the match before the nonmatch, this was coded as a correct response. Group-based pupil dilation 
across time (b) is shown separately for infants whose performance was above and below the median. Infants were median split on the 
basis of their visual working memory (VWM) performance. We found that infants who performed better overall in the memory task had 
significantly larger pupil dilation during encoding. The scatterplot (c) shows individual infants’ VWM performance as a function of their 
average pupil diameter during encoding and maintenance (the second half of the period shown in b). The best-fitting regression line is 
also shown. Figure adapted from Cheng, Kaldy, and Blaser (2019a).
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the match!”). We have shown that 10-month-old infants 
(but not 8-month-olds) can perform above chance with 
two to-be-remembered objects in this task (Kaldy et al., 
2016) and that 25-month-olds can track the identities 
of objects even if they moved during occlusion (Cheng, 
Kaldy, & Blaser, 2019b).

To assess the role of cognitive effort in infants’ mem-
ory performance, we tested 13-month-olds in the DMR 
paradigm and analyzed both their behavioral and pupil 
responses (Cheng et al., 2019a). We found that infants 
who had larger pupils during the memory-encoding 
phase of trials had better subsequent memory perfor-
mance (Figs. 1b and 1c). (The relationship between 
pupil size and performance was present on a trial-by-
trial basis as well; trials in which pupil dilation was 
larger during encoding were more likely to end in suc-
cess.) Looking at this relationship across all participants 
allowed us to determine the function relating pupil 
dilation to performance: Every 0.1 mm of pupil dilation 
driven by task-relevant effort resulted in an approxi-
mately 4% increase in performance. Recently, Ross-
Sheehy and Eschman (2019) analyzed pupil responses 
in infants (and adults) during a change-detection task 
with a 500-ms delay and found a differential response 
to the trial outcome (i.e., the pupil differentiated a 
change outcome from a no-change outcome). However, 
they did not use the pupil to map the relationship 
between infants’ effort (i.e., as measured by the pupil 
during memory encoding) and memory performance.

What causes these moment-to-moment fluctuations 
in effort and what determines individual differences in 
the frequency of high-effort moments are especially 
important questions to address in future studies. Several 
studies have looked at individual differences in differ-
ent aspects of infants’ attentional control and their 
developmental trajectory. For example, infants’ focused 
attention in play-based tasks at 9 to 12 months can pre-
dict their effortful control scores on parent-report sur-
veys 1 to 2 years later ( Johansson, Marciszko, Gredebäck, 
Nyström, & Bohlin, 2015; Kochanska, Murray, & Harlan, 
2000). These findings suggest that the early ability to 
control and exert task-relevant effort has a certain 
amount of individual stability and longitudinal predic-
tive value. Pupillometry could be a fruitful method to 
build a mechanistic model of effortful control develop-
ment from infancy to childhood in future longitudinal 
studies.

Accounting for the Role of Effort

There are two ways in which accounting for effort and 
differences in effort between contexts, individuals, and 
groups can affect theories of cognitive development. 
First, as discussed above, ignoring variability in effort 

may lead to a systematic underestimation of infants’ 
abilities. In the domain of working memory, this means 
underestimating capacity. By isolating high-effort 
moments, we can determine best-case capacity, and this 
best-case memory may support cognitive abilities that 
the average, underestimated value does not. For instance, 
current estimates of VWM capacity seem to show that 
infants can reliably maintain only one object in VWM 
until about 8 months of age (Kaldy & Leslie, 2005; Ross-
Sheehy et al., 2003). These limits would radically con-
strain higher cognitive processing in infants. It would 
mean, for example, that a young infant could not evalu-
ate binary relationships—same/different, bigger/smaller, 
old/new—on the basis of representations that are held 
in memory. This is in conflict with some highly influential 
findings in the infant-cognition literature. For example, 
Johnson and colleagues (2009) reported that 5-month-
old infants could learn a rule that was implemented on 
three serially presented multimodal objects. In addition, 
Wynn’s (1992) seminal two-object tracking task could 
not be solved by 5-month-olds if their VWM could hold 
only a single object. We anticipate that once the modu-
latory effect of effort is accounted for in future studies 
of VWM capacity development, these quantitative esti-
mates will be revised upward, helping to resolve these 
discrepancies.

Second, because poor performance in a task may 
reflect lower effort rather than weaker ability, one 
should resist attributing differences in performance to 
differences in domain-specific cognitive processes 
before accounting for the effect of differences in effort. 
For instance, in a visual search study, we found that 
2-year-olds diagnosed with autism spectrum disorder 
(ASD) could reliably outperform typically developing 
(age-matched) toddlers. We tentatively attributed this 
finding to visual attentional differences (perceptual 
enhancement), but subsequent pupillometric analyses 
revealed that pupil diameter during search predicted 
success at finding the target in both groups. We found 
that toddlers diagnosed with ASD were more frequently 
in a high-effort mode during search than the typically 
developing control subjects (Blaser, Eglington, Carter, 
& Kaldy, 2014). That is, toddlers with ASD outperformed 
control subjects not because they had better visual skills 
or visual search strategies but because they tried harder 
more often. Even in cases in which it does not explain 
observed differences, accounting for effort helps to 
refine theoretical accounts. For instance, in adults, 
whereas greater effort (manipulated by incentives and 
as measured by the pupil) is associated with better 
performance in a complex span working memory task, 
it cannot fully explain the difference in performance 
between high-span and low-span individuals (Heitz, 
Schrock, Payne, & Engle, 2008).
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Future Directions

Cognitive effort is a ubiquitous modulator of task per-
formance capable of determining success or failure. 
Recently, the construct of cognitive effort has become 
central in computational studies of decision making and 
other higher-level cognitive processes (e.g., Shenhav 
et al., 2017). In developmental work, we see two areas 
of inquiry in which leveraging pupillometry as a mea-
sure of effort will be of critical importance: (a) deter-
mining the contexts (tasks, stimuli, and incentives), 
individual differences, and group traits that determine 
patterns of effort and (b) using epochs of maximal effort 
to improve estimates of underlying competence and 
reassess developmental trajectories of cognitive pro-
cesses. We expect these inquiries to be especially fruitful 
in the domain of working memory and decision making, 
processes that require effortful cognitive control.
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