Robust Visual Working Memory for object features in 2.5-year-olds

Chen Cheng, Zsuzsa Kaldy, & Erik Blaser

Developmental and Brain Sciences, University of Massachusetts Boston, Boston, MA

Background

VWM precision increases over development, into later childhood (Burnett Heyes et al., 2012). Remembering multiple objects reduces VWM precision, in 18-month-olds (Zosh et al., 2012).

However, toddlers' VWM precision for multiple objects is not well understood.

Here, we manipulated the shared features (color or shape) and complexity of to-be-remembered objects in a Delayed Match Retrieval paradigm (Kaldy et al., 2016) in 2- to 3-year-old toddlers. In the task, toddlers were encouraged to look back to the correct location of the Match card. To succeed, toddlers need to remember object-location bindings.

We had hypothesized that more complex, more similar objects would be more confusable, decreasing memory performance.

Method

Exp.1: UNIQUE OBJECTS

- **Stimuli**

 3 hard-to-name objects were presented as the memory set on each trial; one was a Match to the Sample, the other two were NonMatch cards.

 Participants: N=44, M_age = 30.3 m (range = 23.8 - 38.3 m)

Exp.2: SHARED FEATURES

- **Stimuli**

 Exp. 2 was identical to Exp. 1, except that besides the Match and a NonMatch, there was now a MisMatch card which shared either color or shape with the Match. Also, objects varied in complexity.

 Participants: N=52, M_age = 30.7 m (range = 24.5 - 37.8 m)

We compared:
- MisMatch vs. NonMatch
- Shared-shape vs. Shared-color trials
- Simple vs. Complex trials
- Also, temporal & spatial location of the Match.

Results

Overall performance

- **No effect of age**

 Over this range, performance did not increase as a function of age with either Unique objects (Exp. 1) or with Shared-feature objects (Exp. 2) (p > 0.47).

- **Toddlers were successful at 3-card DMR**

 Toddlers’ performance in both experiments was significantly above chance (p <0.001; p =0.029). Performance did not differ between the two experiments (p = 0.22).

Shared Features (Exp 2)

- **Memory performance was not affected by shared features or object complexity**

 We did not see a difference in performance when the MisMatch shared its shape with the Match vs. sharing its color (p = 0.77).

- **Memory performance was affected by spatial position and serial order of the Match**

 Toddlers performed better when the Match was shown left or right.

- **Toddlers showed a primacy and a recency effect.**

Conclusion

- 2.5 year olds succeeded in a three-card Delayed Match Retrieval task.
- Contrary to our expectations, performance was not significantly impaired when objects in the memory set shared a feature (color or shape) or had increased complexity; memory precision seemed to be sufficient for object discrimination.
- Success in DMR requires remembering both what and where information. The robustness to feature-sharing/complexity, along with an observed spatial position bias, suggests that memory for location may be the limiting factor on performance.

This project was supported by NIH #1R15HD086658.
Burnett Heyes et al., 2012, Developmental Science
Kaldy et al., 2016, Developmental Science
Zosh et al., 2012, Journal of Experimental Child Psychology
Contact Chen.Chieng001@umb.edu